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ABSTRACT

This paper presents a new algorithm and architecture for motion
estimation. The proposed global elimination algorithm (GEA) is
derived from successive elimination algorithm (SEA). The main
idea is to remove the branches of SEA to make data flow more
regular and suitable for hardware. Besides, the processing time
per motion vector for GEA is fixed, no initial guess is required,
and the skipping ratio of search positions can be fixed within
frames and is even higher than 99%. The average PSNR of
compensated frames is almost the same (within 0.1dB) as that of
full-search block matching algorithm (FBMA). An architecture
composed of a systolic part, an adder tree, and a comparator tree
is also developed for GEA. Simulation results show our design
outperforms many FBMA architectures in normalized processing
capability per gate and normalized power at gate level.

1. INTRODUCTION

Motion-compensated transform coding has been adopted by all
of the existing standards related to video coding, such as the
MPEQG series and the H.26x series. Motion estimation removes
temporal redundancy within frames and thus provides the coding
system with high compression ratio. Full-search block matching
algorithm (FBMA) is the most popular but demands the most
computation. Recently, successive elimination algorithm (SEA)
[1][2] is well known for its capabilities to reduce the heavy
computation of FBMA and maintain the same results as FBMA.
It is more attractive than other fast algorithms that cause PSNR
loss, such as three-step search, diamond search, ...etc. However,
it is critical for SEA to find good initial guesses of motion
vectors, which is a difficult task for the regions where the motion
field is not smooth. Besides, due to the irregular data flow,
systolic mapping of SEA for hardware is never an easy task.

A new search algorithm called global elimination algorithm
(GEA) is proposed in this paper. In contrast to SEA, the
branches are removed, the data flow is regular, the processing
time per motion vector is fixed, no initial guess is needed, and
the skipping ratio is also fixed within frames and is higher than
99%. Experimental results show that GEA achieves almost the
same coding gain as FBMA, and sometimes the PSNR of the
compensated frame obtained by GEA is even higher than that of
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FBMA. An efficient architecture design using GEA is also
proposed. The core consists of a systolic part, an adder tree, and
a comparator tree. Compared to many FBMA architectures [3]-
[9], the normalized processing capability per gate is the best, and
the normalized power at gate level is the lowest.

In Section 2, SEA is reviewed, and then the proposed GEA

" is described. Next, GEA architecture is presented in Section 3.

Section 4 compares GEA architecture to FBMA architectures.
Finally, Section 5 gives a conclusion.

2. ALGORITHMS

FBMA can be described by the following equations:
SAD (mm) = 32 3 |e(iu J) = s(i+ m,j+ n)]

MV = {(u,v)|SAD (u,v) S SAD (m,n),-pSmS p-l—p<SsnsSp-1}

ey

where current block data are {c(x,»)|0<x<N-1, 0<y< N-1},
search area data are {s(x,))|-psx< p+N-2, -p <y<p+N-2}, block
size is NxN, search range is -p~p-1, and MV is the motion vector
of current block with minimal SAD among (2p)* search positions.

2.1. Successive elimination algorithm

The main idea of SEA can be shown in the following equation:
N-IN-1
SAD(m,ny= 3" 3 \eli, j) = s(i+m, j +n)) )
i=0 j=0
N-IN-1 N-IN-1
> lel, )= 2, Dol s(i+m, j+n)|=K ~SB(m,n) = sea(m,n)
i=0 j=0 i=0 j=0
For every search position, the computation of sea is much easier
than that of SAD due to the fact that K is the sum of current
block and only has to be calculated one time, and the sum of
candidate block SB(m, n) can be derived from SB(m-1, n):

SB(m,n)=SB(m—l,n)-f-NZ—‘s(mi-N—l,n+a)—Nz_:ls(m—l,n+b) ©)

a=0 b=0

If sea(m,n) is larger than current minimal S4D (SAD,,;,), it is
guaranteed by (2) that SAD(m,n) will be larger than S4D,,;,, and
thus the search position (m,n) can be skipped. Otherwise,
SAD(m,n) needs to be calculated and compared with SAD,,;,,. It is
clear that a good initial guess of MV with small SAD is critical
for SEA to increase the skipping ratio. Fig. 1(a) shows the flow-
chart of SEA. A conditional branch exists after sea calculation
for each search position, which makes data flow irregular.
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Fig. 1. (a) Flowchart of SEA, (b) msea at level 3 with N=16.
2.2. Multilevel successive elimination algorithm

Let us modify (2) to form the following equation:
SAD(m,n)='§'§|c(i,j)—s(i+m,j+n)1 )

i=0 ju0

2 LZ—I|K,-SB,(m,n)|Emsea(m,n)

N-AN-1 N=IN-I
2 Z Zlc(i,j) |A-2 le(i+m,j+n)|=-=l( - SB(m,n) = sea(m,n)
im0 =0 =0 J=0

In (4), an NxN block is divided into L sub-blocks, K, is the sum
of g-th sub-block in current block, and §B,(m,n) is the sum of g¢-
th sub-block in candidate block at search position (m,n). For
each search position, msea(m,n) is calculated to decide if search
position (m,n) can be skipped. When L=1, (4) is reduced to (2)
and is called mseq at level 1. If the sub-blocks are of the same
size and L=4,16..., it is called mseaq at level 2,3,..., respectively.
In Fig. 1(b), msea at level 3 with N=16 is taken as an example.
The skipping ratio of multilevel SEA (MSEA) is higher than that
of SEA, but to calculate msea requires more computation than to
calculate sea. When spiral scan or initial guess at M¥ predictor is
adopted, skipping ratio is 50%~90% depending on sequences.

2.3. Global elimination algorithm

The data flow of SEA or MSEA is not regular due to the

conditional branches after the sea or msea calculation to

determine the skipping process. This makes hardware design a

tough task. Furthermore, when true motion vectors are beyond

search range, good initial guesses can never be found, and the

skipping ratio may be so low that even the processing time of

SEA or MSEA is longer than that of FBMA. In our GEA, these

problems can be solved as the following steps:

1) Calculate msea for every search position in raster scan order.

2) Find the M search positions with the smallest M msea values
and skip the rest (2p)? — M search positions.

3) Calculate the SAD values for these M search positions.

4) Let (u,v) with SAD,,;, among the M candidates as final MV.

As readers can see the flow chart of GEA in Fig. 2(a),
global climination of search positions is in step 2 after all msea
values are calculated. No conditional branch is necessary within
the calculation of msea for all search positions, i.e. the control of
GEA is easier than that of SEA or MSEA. The selection of M is
a trade-off between speed and coding gain. Generally speaking,
larger M makes the results more reliable while smaller M saves
more computation. Regardless of M value, the processing time

per MV is now fixed, which is another good feature for hardware.

Although GEA does not guarantee the same results as
FBMA, GEA is very reliable. Experimental results of typical

Table 1. Comparison of FBMA and GEA with parameters as
follows: N=16, msea at level 3, M=7, (a) QCIF, p=16, skipping
ratio=99.31%, (b) CIF, p=32, skipping ratio=99.83%. The
average PSNR of compensated frames is shown in dB.

Video Sequence @ ®
FBMA GEA FBMA GEA
Coastguard 32.93 32.93 31.59 31.55
Container 43.11 43.11 38.53 38.53
Foreman 32.21 32.22 32.85 32.82
Hall Monitor 32.98 32.97 34.90 34.82°
Mobile Calendar 26.15 26.15 25.20 25.16
Silent 35.14 35.16 36.12 36.11
Stefan 24.71 24.67 25.73 25.71
Table Tennis 32.10 32.11 33.03 32.96
Weather 38.42 38.42 37.45 37.45

Find the M scarch positions with the (b)
smallest M msea values and skip the bod
rest (2p) - M search positions » @

;2
calculate SAD(m,n) for 1 s
these M search positions

Let the scarch position with SAD_
among the A candidates as final MV . - - o = = »

@® ©
Fig. 2. (a) Flowchart of GEA, (b) percentage of motion vectors
same as FBMA, Mobile Calendar CIF, and (c) PSNR curves of
compensated frames for FBMA and GEA.

applications with 16x16 block size, 176x144 QCIF (352x288
CIF) video sequences, —~16~15 (-32~31) search range, msea at
level 3, and M=7, which corresponds to a 99.31% (99.83%)
skipping ratio, are shown in Table 1. Many standard sequences
are tested. Sometimes, the average PSNR of the compensated
frames obtained by GEA is even higher than that generated by
FBMA. (Note that a minimal SAD does not guarantce a minimal
mean square error, e.g. 1+9<5+6, 1%+9*>5%+62) The maximal
drop of average PSNR of GEA is only about 0.08dB for Hall
Monitor CIF. At most of the time, the results of GEA are close to
those of FBMA. Fig. 2(b)(c) illustrates Mobile Calendar CIF as
an example. In average, 98.1% motion vectors are the same
between FBMA and GEA for Mobile Calendar CIF. The PSNR
curves are very close, so it is very hard to distinguish them.

3. ARCHITECTURE DESIGN BASED ON GEA

In this section, N=16, msea at level 3, and M=7 are taken as
parameters to develop an architecture design based GEA.

3.1 Systolic part

The data flow of systolic part that calculates the sum of each 4x4
sub-block is shown in Fig. 3. Note that c;; and s, denotes c(k,])
and s(k,7) in (1), respectively, the rectangles are shift registers,
and the search range is —16~15 (p=16). A column of block data
is loaded in parallel at each cycle. When t=0~15, ¢ data are
loaded. The sums of sub-blocks in current block is computed at
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Fig. 3. The data flow of systolic part. A column of block data is
loaded, and sumgy, ~ sums; are calculated in parallel.

Fig. 4. Parallel adder tree to calculate msea in (4).

t=15 and should be stored into registers at the rising edge of
t=16. Next, s data are loaded column by column. When t=16~62,

s data of search positions (-16, -16) ~ (+15, -16) are loaded, and

the sums of sub-blocks for search positions (-16, -16)~ (+15, -16)
are available at t=31~62, respectively. Then, s data of search

positions (-16, -15) ~ (+15, -15) are loaded at t=63~109 and vice

versa. Thus, N + 2p (2p+N-1) clock cycles are needed to load all

data into the systolic module.

3.2 Parallel adder tree

The purpose of parallel adder tree is to compute msea in (4). In
Fig. 4, R is pipeline register. ADxx calculates absolute difference
between csum,, and rsum,, denoted in Fig. 1(b). The parallel
adder tree adds the results from AD00~AD33 and outputs msea.

3.3 Parallel comparator tree

The comparator tree is composed of a forward part shown in Fig.
5(a) and feedback parts shown in Fig. 5(b)(c). Note that the
symbols with “_reg” are registers. In Fig. 5(a), mseal_reg ~
msea7_reg should be properly initialized as OXFFFF before the
first valid msea value from parallel adder tree comes to
msea_in_reg. The maximal value msea_max among eight msea
registers is computed by the forward part. In Fig. 5(b), EQUx
compares whether mseax_reg equals to msea_max or not. The
CHECK functions as states: If no EQU is active, no replace, is
active. If only EQUXx is active, only replace, is active. If two or
more EQU units are active, only one of the corresponding
replace, can be active. For example, when EQU1 and EQU2 are
active, only replace; will be active. In Fig. 5(c), if replace, is
active, mseax_reg and mvx_reg will be replaced by the current
values in msea_in_reg and mv_in_reg, respectively, at the rising
edge of next clock cycle.

To sum up, the comparator tree is to keep the M smallest
msea values and their corresponding motion vectors in
mseax_reg and mvx_reg registers, respectively. However, as

Fig. 5. Parallel comparator tree, (a) forward part to compute
msea_max, (b) one feedback part to find the mseax_reg to be
replaced, (c) the other feedback part to replace the mseax_reg
with msea_in_reg.
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Fig. 6. Overall architecture design for GEA.

shown in Fig. 3, invalid msea values are generated periodically
during the loading of s data. At these cycles, the msea inputted
to comparator tree should be replaced by OXFFFF so that the
results are not affected.

3.4 Overall architecture design

In Fig. 6, GEA architecture is presented in a whole view. Sixteen
RAM modules are used in order to output a column of block
data in parallel. MUX NETWORK selects the right data into
SYSTOLIC PART. It contains sixteen 4-to-1 8-bit multiplexers.
The control signals for MUX NETWORK must be properly
adapted for the different rows of search positions. After the M
motion vectors with smallest msea values among (2p)* search
positions are ready, SAD of these M search positions must be
computed next. Now SAD TREE that calculates msea before can
be reused to do this job. The calculation of SAD for a candidate
block requires N cycles. Thus, GEA architecture totally needs N
+ 2p (2p+N-1) + 3 + MN cycles to find a motion vector. N is
responsible for the loading of ¢ data, 2p (2p+N-1) is for the
loading of s data, 3 is due to pipelines, and MN is the clock
cycles needed to calculate the SAD values of M search positions.

4. COMPARISON WITH OTHER ARCHITECTURES

The comparison of GEA architecture to other architectures based
on FBMA is shown in Table 2 and 3. All designs require
memories of the same bits to store current block data and search
area data. Only the PE array is synthesized because the control
unit is a very small part of the whole design. The PE array of
each design is synthesized and reported by SYNOPSYS Design
Analyzer with 50 MHz constrain using AVANT! 0.35um cell
library. Architectures with symbol * need many shift registers to
avoid data hazards, but these are not implemented. The real gate
count and power at gate level for these designs should be higher
than reported. The processing capability per gate and gate-level
power should be compared under the same throughput of motion
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Table 2. Comparison of architectures with N = 16, p = 16, msea at level 3, and M= 7. Only the PE array is synthesized.

Architecture Description No. of| Cycles | Required | Required Freq. | Gate Count | Normalized Processing]|  Gate-Level | Normalized
PE |per MV | Memory /O | for CIF 30 fps | @50MHz | Capability per Gate | Power @50MHz|  Power

[3] Yang |1-D semi-systolic 321 8192 24 bits 97.32 MHz 28.0K 0.13 26.0 mW 2.99
[4] AB1 1-D systolic 16 | 24064 256 bits 285.88 MHz 3.8K 0.32 11.7 mW 3.95
[4] AB2 2-D systolic 256 { 1504 128 bits 17.87 MHz 95.1K 0.20 227.8 mW 4.82
[5] Hsieh* {2-D systolic 256 | 2209 8 bits 26.24 MHz 100.6K 013 147.2 mW 4.57
[6] Tree Tree structure 256 | 1024 | 2048 bits 12.17 MHz 56.1K 0.51 179.5 mW 2.59
[7] Yeo 2-D semi-systolic | 1024 256 24 bits 3.04 MHz 447.4K 0.26 1052.6 mW 3.79
[8] Lai 1-D semi-systolic | 1024 256 24 bits 3.04 MHz 387.6K 0.30 845.6 mW 3.04
[9] SA* 2-D systolic 256 | 1024 16 bits 12.17 MHz 126.5K 0.23 258.0 mW 3.72
[9] SSA*  12-D semi-systolic 256 | 1024 16 bits 12.17 MHz 106.0K 0.27 280.1 mW 4.04
Ours Based on GEA 16| 1635 128 bits 19.42 MHz 17.9K 1.00 434 mW 1.00

Table 3. Comparison of architectures with N = 16, p = 32, msea at level 3, and M = 7. Only the PE array is synthesized.

Architecture Description No. of| Cycles | Required | Required Freq. | Gate Count [ Normalized Processing|  Gate-Level Normalized
PE_|per MV | Memory VO | for CIF 30 fps | @50MHz | Capability per Gate | Power @50MHz| Power

[3] Yang  |1-D semi-systolic 64 | 16384 24 bits 194.64 MHz 56.0K 0.10 52.0 mW 3.78
[4] AB1 1-D systolic 16| 80896 256 bits 961.04 MHz 3.8K 0.30 11.7 mW 4.20
[4] AB2 2-D systolic 256 | 5056 128 bits 60.07 MHz 95.1K 0.19 227.8 mW 5.12
[5] Hsieh* |2-D systolic 256 | 6241 8 bits 74.14 MHz 100.6K 0.15 1472 mW 4.08
[6] Tree Tree structure 256 | 4096 | 2048 bits 48.66 MHz 56.1K 0.40 179.5 mW 3.27
[7] Yeo 2-D semi-systolic | 4096 256 24 bits 3.04 MHz | 1790.0K 0.20 4210.3 mW 4.79
[8] Lai 1-D semi-systolic | 4096 256 24 bits 3.04 MHz | 1550.4K 0.23 3382.4 mW 3.84
[9] SA* 2-D systolic 256 | 4096 16 bits 48.66 MHz 126.5K 0.18 258.0 mW 4.69
[9] SSA*  12-D semi-systolic 256 | 4096 16 bits 48.66 MHz 106.0K 0.21 280.1 mW 5.09
Ours Based on GEA 16| 5187 128 bits 61.62 MHz 17.9K 1.00 43.4 mW 1.00
vectors, so the normalized processing capability per gate [2] X.Q. Gao, CJ. Duanmu, and C.R. Zou, “A multilevel
(NPCPG) and the normalized power (NP) are defined as: successive elimination algorithm for block matching motion
PePG _ (Required Freg. for CIF 30 5" / (Gate Count @SOMHz)) for XXX (5) estimation,” IEEE Trans. on Image Processing, vol. 9, no.
X = [(Required Freq. for CIF 30 /ps)" / (Gate Count @50MHz)] for GEA 3, pp. 501-504, Mar. 2000.

[3] KM. Yang, M.T. Sun, and L. Wu, “A family of VLSI

_ [(Power @ 50MHz)x (Re quired Freq. for CIF 30 fps / 50MHz)] for XXX (6) designs for the motion compensation block-matching

% " ((Power @ S50MHz)x (Re quired Freq. for CIF 30 fps / SOMHz)] for GEA algorithm,” IEEE Trans. on Circuits and Systems, vol. 36,
Simulation results show that GEA architecture outperforms no. 2, pp. 1317-1358, Oct. 1989.
many FBMA architectures in normalized processing capability [4] T. Komarek and P. Pirsch, “Array architectures for block
per gate and normalized power at gate level. In addition, it is matching algorithms,” IEEE Trans. on Circuits and Systems,
easy for GEA architecture to support advanced prediction mode, vol. 36, no. 2, pp. 1301-1308, Oct. 1989.
i.e. to allow four motion vectors of 8x8 blocks in a 16x16 [5] C.H. Hsieh and T.P. Lin, “VLSI architecture for block-
macro-block. Only four extra parallel comparator trees and some matching motion estimation algorithm,” IEEE Trans. on
changes for control are required in this case. Circuits and Systems for Video Technology, vol. 2, no. 2,
pp. 169-175, Jun. 1992.
5. CONCLUSION [6] Y.S. Jehng, L.G. Chen and T.D. Chiueh, “An efficient and

. . L . simple VLSI tree architecture for motion estimation
In this paper, a novel motion estimation algorithm called GEA algorithms,” IEEE Trans. on Signal Processing, vol. 41, no.
and an architecture for GEA are proposed. Several problems of 2, pp. 889-900, Feb. 1993. ’

SEA are solved by GEA. No initial guess is needed, the data [7]
flow is regular, the processing time per motion vector is fixed, architecture for full-search block matching motion
the skipping ratio is high, and the estimation results of GEA are estimation,” IEEE Trans. on Circuits and Systems for Video
almost the same as those of FBMA. The architecture design for Technology, vol. 5, no. 5, pp. 407-416, Oct. 1995.
GEA is also efficient in area, speed, and power, compared with 8] Y.K. Lai and L.G. Chen, “A data-interlacing architecture
many existing FBMA architectures. with two-dimensional data-reuse for full-search block-
matching algorithm,” IEEE Trans. on Circuits and Systems
Jor Video Technology, vol. 8, no. 2, pp. 124-127, Apr. 1998.
[9] Y.H. Yeh and C.Y. Lee, “Cost-effective VLSI architectures
and buffer size optimization for full-search block matching
algorithms,” IEEE Trans. on VLSI Systems, vol. 7, no. 3, pp.
345-358, Sep. 1999.
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